

Treatment of Polymeric Wastewater by Advanced Oxidation Process

Dr. Dina Hamad Chemical Engineering, Ryerson University

Collaborative Research and Education (CRE) Initiative East Lansing, Michigan March 25-26, 2019

Outline

□ Introduction

- □ Motivations and Objectives
- Experimental Setups and Procedures
- **Results and Discussion**
- □ Conclusions

Water-Soluble Polymers: PVA, PAA, PEG, PAM,....

Synthetic polymers that can dissolve, disperse or swell in water.

➤ Large scale production (over 3,700,000 ton/year)

➤Wide spectrum of applications

Introduction

Fig. 1. World Consumption of Water-Soluble Polymers

PVA: Global production of 775,000 tons/year

 Table 1. Applications of Water-Soluble Polymers

Polymer MW (g/mol)	Applications
< 10,000	Detergents, pigment dispersants and emulsifiers
10,000 - 100,000	Dissolvable Laundry packages
100,000 - 1,000,000	Thickeners, flocculants, sizing agent
> 1,000,000	Superabsorbent, liquid crystal displays (LCDs

- Generation of considerable amounts of PVA-containing wastewater: production, use, and disposal
- Released into the aqueous environment
- Hard to recover for recycle (low concentration) \rightarrow Degradation
- Non-biodegradable PVA polymer \rightarrow resistance to biological treatment processes.

PVA is a non-toxic compound

- Negative influence on micro-organisms
- Support foam formation
- Decrease the transport of oxygen into water

Powerful technologies to transform organic contaminants into water and carbon dioxide

- □ Formation of hydroxyl radicals (strong oxidants)
- □ Reaction of these radicals with polymers soluble in water

Research Motivations

Introduction Motivations and Objectives Experimental Setup and Procedures Results and Discussion Concluding Remarks

- □ The impact of non-sustainable wastewater treatment will extend beyond its immediate operational vicinity and even into future generations.
- □ The H_2O_2 residuals are found to be toxic to microorganisms. Therefore, there is an urgent need to control the H_2O_2 concentration in the effluent.
- Expert knowledge is required to establish the relationships between the process conditions and treated effluent solution.

Research Objectives

- 1. Design a sustainable AOP treatment process that encourage "zero-discharge".
- 2. Investigate the performance of photoreactors to determine feasibility and limitations of the existing UV/H_2O_2 process.
- 3. Design MPC controller for PVA degradation process.
- 4. Assess the behavior of the process when dealing with process uncertainty such as set-point changes and disturbances.
- 5. Improve the effluent quality by maintaining the TOC and the residual H_2O_2 below the defined limits.

Laboratory View of the Experimental Setup

Background Motivations and Objectives Experimental Setup and Procedures Results and Discussion Concluding Remarks

Fig. 2. Laboratory View of the Experimental Setup

UV/H₂O₂ Process Control Overview

Experimental Setup and Procedures Results and Discussion Concluding Remarks

Introduction

Motivations and Objectives

- □ AOP is a MIMO system multivariable process with several inputs and outputs
- □ Noisy measurements
- □ Highly unpredictable process disturbances
- □ Variability of the influent
- □ Pairing each input to output constitute a configuration of a control loop
- □ Interaction is a major challenge for designing a control system

Background Motivations and Objectives Experimental Setup and Procedures

Results and Discussion

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{0.436e^{-0.5s}}{0.733s+1} & \frac{0.139e^{-0.5s}}{1.433s+1} \\ \frac{7.02e^{-0.5s}}{1.117s+1} & \frac{0.059e^{-0.5s}}{1.367s+1} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} \frac{0.417e^{-0.5s}}{0.95s+1} \\ \frac{-0.585}{0.7833s+1} \end{bmatrix} u_3$$

Closed Loop UV/ H₂O₂ System

Background Motivations and Objectives Experimental Setup and Procedures Results and Discussion

Concluding Remarks

Adjustment of the manipulated variable - process variable is maintained at a desired value (set point) in spite of unpredicted disturbances.

Model predictive control loop of a photoreactor

Background Motivations and Objectives Experimental Setup and Procedures

Results and Discussion

Concluding Remarks

Process response to a 10% set point change in **TOC effluent** (+36mg/L). Unconstrained control Weighted uwt=[0.1 0.5]

Background Motivations and Objectives Experimental Setup and Procedures Results and Discussion Concluding Remarks

- \Box UV/H₂O₂ process is experimentally proven to be a powerful technique for treatment of polymeric wastewater.
- MPC multivariable controller is able to handle process interactions and produced good performance for tracking set point changes.
- □ AOP process has potential in contributing to sustainability as they rely on lessenergy and consume less chemicals.

Acknowledgements

• Dr. Ramdhane Dhib Professor, Chemical Engineering

Dr. Mehrab Mehrvar
 Professor, Chemical Engineering

• Dr. Thomas Duever Dean, Faculty of Engineering

RYERSON UNIVERSITY

 Natural Science and Engineering Research Council of Canada (NSERC)

Thank You.